Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 746
Filtrar
1.
J Appl Microbiol ; 135(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38458234

RESUMO

AIMS: Many countries are in the process of designing a deep geological repository (DGR) for long-term storage of used nuclear fuel. For several designs, used fuel containers will be placed belowground, with emplacement tunnels being backfilled using a combination of highly compacted powdered bentonite clay buffer boxes surrounded by a granulated "gapfill" bentonite. To limit the potential for microbiologically influenced corrosion of used fuel containers, identifying conditions that suppress microbial growth is critical for sustainable DGR design. This study investigated microbial communities in powdered and gapfill bentonite clay incubated in oxic pressure vessels at dry densities between 1.1 g cm-3 (i.e. below repository target) and 1.6 g cm-3 (i.e. at or above repository target) as a 1-year time series. RESULTS: Our results showed an initial (i.e. 1 month) increase in the abundance of culturable heterotrophs associated with all dry densities <1.6 g cm-3, which reveals growth during transient low-pressure conditions associated with the bentonite saturation process. Following saturation, culturable heterotroph abundances decreased to those of starting material by the 6-month time point for all 1.4 and 1.6 g cm-3 pressure vessels, and the most probable numbers of culturable sulfate-reducing bacteria (SRB) remained constant for all vessels and time points. The 16S rRNA gene sequencing results showed a change in microbial community composition from the starting material to the 1-month time point, after which time most samples were dominated by sequences associated with Pseudomonas, Bacillus, Cupriavidus, and Streptomyces. Similar taxa were identified as dominant members of the culture-based community composition, demonstrating that the dominant members of the clay microbial communities are viable. Members of the spore-forming Desulfosporosinus genus were the dominant SRB for both clay and culture profiles. CONCLUSIONS: After initial microbial growth while bentonite was below target pressure in the early phases of saturation, microbial growth in pressure vessels with dry densities of at least 1.4 g cm-3 was eventually suppressed as bentonite neared saturation.


Assuntos
Bentonita , Resíduos Radioativos , Resíduos Radioativos/análise , Argila , RNA Ribossômico 16S/genética
2.
J Contam Hydrol ; 262: 104309, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38308940

RESUMO

The high-level nuclear waste, HLW, from Swedish and Finnish reactors will be deposited in crystalline rock at depths around 500 m. The waste is enclosed in steel canisters protected against corrosion by a 5 cm thick copper shell, which ensures a lifetime far longer than 100 000 years. Should some canister be breached any leaking nuclides will have decayed to so low activity that even if they reached the biosphere, they would cause minimal risk to humans. The cost of the copper is significant. The dismantling of the nuclear reactors, with induced activity must also be disposed of and this waste volume is much larger than that of the HLW, which makes it impossible to protect it in the same way. This paper explores if by locating the waste at larger depth where the ground water is more saline, and where the hydraulic conductivity of the rock is lower up-flow of contaminated water can be ensured to be negligible because the denser water at larger depth counteracts up-flow due to negative buoyancy. Several processes that could cause local up-flow are addressed, such as infiltration of meteoric water, impact of surface topology, heat production of the waste, geothermal gradient, salinity gradient, hydraulic conductivity heterogeneities and salt migration between seeping water and salt in matrix pore water. Flow and transport simulations using data from extensive field investigations over more than ten years with scores of km deep boreholes suggest that a HLW repository at around one km depth may be sufficient to hinder up-flow to the biosphere.


Assuntos
Água Subterrânea , Resíduos Radioativos , Humanos , Modelos Teóricos , Cobre , Água Subterrânea/química , Radioisótopos , Resíduos Radioativos/análise , Água
3.
Chemosphere ; 352: 141462, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38364923

RESUMO

The migration and retention of radioactive contaminants such as 137Cesium (137Cs) in various environmental media pose significant long-term storage challenges for nuclear waste. The distribution coefficient (Kd) is a critical parameter for assessing the mobility of radioactive contaminants and is influenced by various environmental conditions. This study presents machine-learning models based on the Japan Atomic Energy Agency Sorption Database (JAEA-SDB) to predict the Kd values for Cs in solid phase groups. We used three different machine learning models: random forest (RF), artificial neural network (ANN), and convolutional neural network (CNN). The models were trained on 14 input variables from the JAEA-SDB, including factors such as the Cs concentration, solid-phase properties, and solution conditions, which were preprocessed by normalization and log-transformation. The performances of the models were evaluated using the coefficient of determination (R2) and root mean squared error (RMSE). The RF, ANN, and CNN models achieved R2 values greater than 0.97, 0.86, and 0.88, respectively. We also analyzed the variable importance of RF using an out-of-bag (OOB) and a CNN with an attention module. Our results showed that the environmental media, initial radionuclide concentration, solid phase properties, and solution conditions were significant variables for Kd prediction. Our models accurately predict Kd values for different environmental conditions and can assess the environmental risk by analyzing the behavior of radionuclides in solid phase groups. The results of this study can improve safety analyses and long-term risk assessments related to waste disposal and prevent potential hazards and sources of contamination in the surrounding environment.


Assuntos
Césio , Resíduos Radioativos , Césio/análise , Radioisótopos de Césio/análise , Resíduos Radioativos/análise , Japão
4.
FEMS Microbiol Rev ; 48(1)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216518

RESUMO

The potential for microbial activity to occur within the engineered barrier system (EBS) of a geological disposal facility (GDF) for radioactive waste is acknowledged by waste management organizations as it could affect many aspects of the safety functions of a GDF. Microorganisms within an EBS will be exposed to changing temperature, pH, radiation, salinity, saturation, and availability of nutrient and energy sources, which can limit microbial survival and activity. Some of the limiting conditions are incorporated into GDF designs for safety reasons, including the high pH of cementitious repositories, the limited pore space of bentonite-based repositories, or the high salinity of GDFs in evaporitic geologies. Other environmental conditions such as elevated radiation, temperature, and desiccation, arise as a result of the presence of high heat generating waste (HHGW). Here, we present a comprehensive review of how environmental conditions in the EBS may limit microbial activity, covering HHGW and lower heat generating waste (LHGW) in a range of geological environments. We present data from the literature on the currently recognized limits to life for each of the environmental conditions described above, and nutrient availability to establish the potential for life in these environments. Using examples where each variable has been modelled for a particular GDF, we outline the times and locations when that variable can be expected to limit microbial activity. Finally, we show how this information for multiple variables can be used to improve our understanding of the potential for microbial activity to occur within the EBS of a GDF and, more broadly, to understand microbial life in changing environments exposed to multiple extreme conditions.


Assuntos
Microbiologia Ambiental , Ambientes Extremos , Resíduos Radioativos , Resíduos Radioativos/análise
5.
Sci Total Environ ; 915: 170149, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38242445

RESUMO

Deep Geological Repositories (DGRs) consist of radioactive waste contained in corrosion-resistant canisters, surrounded by compacted bentonite clay, and buried few hundred meters in a stable geological formation. The effects of bentonite microbial communities on the long-term stability of the repository should be assessed. This study explores the impact of harsh conditions (60 °C, highly-compacted bentonite, low water activity), and acetate:lactate:sulfate addition, on the evolution of microbial communities, and their effect on the bentonite mineralogy, and corrosion of copper material under anoxic conditions. No bentonite illitization was observed in the treatments, confirming its mineralogical stability as an effective barrier for future DGR. Anoxic incubation at 60 °C reduced the microbial diversity, with Pseudomonas as the dominant genus. Culture-dependent methods showed survival and viability at 60 °C of moderate-thermophilic aerobic bacterial isolates (e.g., Aeribacillus). Despite the low presence of sulfate-reducing bacteria in the bentonite blocks, we proved their survival at 30 °C but not at 60 °C. Copper disk's surface remained visually unaltered. However, in the acetate:lactate:sulfate-treated samples, sulfide/sulfate signals were detected, along with microbial-related compounds. These findings offer new insights into the impact of high temperatures (60 °C) on the biogeochemical processes at the compacted bentonite/Cu canister interface post-repository closure.


Assuntos
Bentonita , Resíduos Radioativos , Bentonita/química , Resíduos Radioativos/análise , Cobre , Corrosão , Temperatura , Sulfatos , Lactatos , Acetatos
6.
World J Microbiol Biotechnol ; 40(1): 41, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38071262

RESUMO

As bentonite hosts a diverse spectrum of indigenous microorganisms with the potential to influence the long-term stability of deep geological repositories, it is essential to understand the factors influencing microbial activity under repository conditions. Here, we focus on two factors, i.e., temperature and swelling pressure, using a suspension of Cerny Vrch bentonite to boost microbial activity and evaluate microbial response. Suspensions were exposed either to different pressures (10, 12 and 15 MPa; to simulate the effect of swelling pressure) or elevated temperatures (60, 70, 80 and 90 °C; to simulate the effect of cannister heating) for four weeks. Each treatment was followed by a period of anaerobic incubation at atmospheric pressure/laboratory temperature to assess microbial recovery after treatment. Microbial load and community structure were then estimated using molecular-genetic methods, with presence of living cells confirmed through microscopic analysis. Our study demonstrated that discrete application of pressure did not influence on overall microbial activity or proliferation, implying that pressure evolution during bentonite swelling is not the critical factor responsible for microbial suppression in saturated bentonites. However, pressure treatment caused significant shifts in microbial community structure. We also demonstrated that microbial activity decreased with increasing temperature, and that heat treatment strongly influenced bentonite microbial community structure, with several thermophilic taxa identified. A temperature of 90 °C proved to be limiting for microbial activity and proliferation in all bentonite suspensions. Our study emphasizes the crucial role of a deep understanding of microbial activity under repository-relevant conditions in identifying possible strategies to mitigate the microbial potential within the deep geological repository and increase its long-term stability and safety.


Assuntos
Bentonita , Resíduos Radioativos , Bentonita/análise , Bentonita/química , Resíduos Radioativos/análise , Temperatura , Fenômenos Químicos , Proliferação de Células
7.
J Radiol Prot ; 43(4)2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37797613

RESUMO

A method for reconstructing surface activity density (SAD) maps based on the solution of the Fredholm equation has been developed and applied. The construction of SAD maps was carried out for the site of the temporary storage (STS) of spent fuel and radioactive waste (RW) in Andreeva Bay using the results of measuring campaign in 2001-2002 and for the sheltering construction of the solid RW using the results of measurements in 2021. The Fredholm equation was solved in two versions: under conditions of a barrier-free environment and taking into account buildings and structures located on the industrial site of the STS Andreeva Bay. Lorenz curves were generated to assess the compactness of the distributions of SAD and ambient dose equivalent rate (ADER) for the industrial site and the sheltering construction at STS Andreeva Bay, the area of the IV stage uranium tailing site near the city of Istiklol in the Republic of Tajikistan, and for roofs of the Chernobyl nuclear power plant. The nature of impact of the resolution (fragmentation) of the raster, the value of the radius of mutual influence of points (contamination sites), the height of the radiation detector above the scanned surface and the angular aperture of the radiation detector on the accuracy of the SAD reconstruction is shown. The method developed allows more accurate planning of decontamination work when only ADER measurements data is available. The proposed method can be applied to support the process of decontamination of radioactively contaminated territories, in particular during the remediation of the STS Andreeva Bay.


Assuntos
Acidente Nuclear de Chernobyl , Monitoramento de Radiação , Resíduos Radioativos , Baías , Monitoramento de Radiação/métodos , Resíduos Radioativos/análise , Radioisótopos
8.
Extremophiles ; 27(3): 27, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37839067

RESUMO

Decades of nuclear activities have left a legacy of hazardous radioactive waste, which must be isolated from the biosphere for over 100,000 years. The preferred option for safe waste disposal is a deep subsurface geological disposal facility (GDF). Due to the very long geological timescales required, and the complexity of materials to be disposed of (including a wide range of nutrients and electron donors/acceptors) microbial activity will likely play a pivotal role in the safe operation of these mega-facilities. A GDF environment provides many metabolic challenges to microbes that may inhabit the facility, including high temperature, pressure, radiation, alkalinity, and salinity, depending on the specific disposal concept employed. However, as our understanding of the boundaries of life is continuously challenged and expanded by the discovery of novel extremophiles in Earth's most inhospitable environments, it is becoming clear that microorganisms must be considered in GDF safety cases to ensure accurate predictions of long-term performance. This review explores extremophilic adaptations and how this knowledge can be applied to challenge our current assumptions on microbial activity in GDF environments. We conclude that regardless of concept, a GDF will consist of multiple extremes and it is of high importance to understand the limits of polyextremophiles under realistic environmental conditions.


Assuntos
Extremófilos , Resíduos Radioativos , Eliminação de Resíduos , Resíduos Radioativos/análise
9.
J Environ Manage ; 345: 118610, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37536131

RESUMO

TEPCO's Fukushima Daiichi nuclear power plant accident prompted extensive decontamination work. The decontaminated soil and incinerated ash generated by the process are scheduled for final disposal by March 2045 outside Fukushima Prefecture. The final disposal is unprecedented worldwide. Clarifying their acceptability will contribute to the final disposal of decontaminated soil and incinerated ash, as well as add knowledge about the perceived risk of low-concentration radioactive waste. A questionnaire survey was conducted to assess the psychological factors influencing final disposal acceptability. The results of the structural equation modeling demonstrated stable results, with risk perception decreasing acceptability, social benefits increasing acceptability, and personal benefits having limited impact. The initiative for the final disposal of decontaminated soil and incinerated ash can facilitate the reconstruction of Fukushima Prefecture after the disaster. Trust and intergenerational expectations are critical factors influencing the acceptability of this disposal. The responses were classified based on the relevance of moral norms using cluster analysis and moral foundations. The influence of each element on acceptability varied depending on the cluster. Trust was identified as the most influential factor in acceptability, regardless of the level of importance placed on moral norms.


Assuntos
Acidente Nuclear de Fukushima , Resíduos Radioativos , Solo , Radioisótopos de Césio/análise , Centrais Nucleares , Resíduos Radioativos/análise , Japão
10.
J Radiol Prot ; 43(3)2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37489839

RESUMO

In the 1960s, a shore technical base (STB) was established at Andreeva Bay on the Kola Peninsula, in northwest Russia. The STB maintained nuclear submarines and the nuclear icebreaker fleet, receiving and storing fresh and spent nuclear fuel (SNF) as well as solid and liquid radioactive waste (RW). It was subsequently re-designated as a site for temporary storage (STS) for SNF and RW. Over time, the SNF storage facilities partly lost their containment functions, leading to radioactive contamination of workshops and the site above permitted values. The technological and engineering infrastructure at the site was also significantly degraded as well as the condition of the stored SNF. At present, the STS Andreeva Bay facility is under decommissioning. This paper describes progress with the creation of safe working measures for workers involved in site remediation and SNF recovery operations, including the determination of safe shift times in high radiation areas, as part of overall optimization of safety. Results are presented for the successful application of these measures in the period 2019-2021, during which time significant SNF recovery and removal operations were completed without incident. Significant important experience has been gained to support safe removal of remaining SNF, including the most hazardous degraded fuel, as well as recovery of other higher level RW and decommissioning of the old storage buildings and structures.


Assuntos
Monitoramento de Radiação , Resíduos Radioativos , Humanos , Baías , Monitoramento de Radiação/métodos , Resíduos Radioativos/análise , Reatores Nucleares , Federação Russa
11.
Radiat Prot Dosimetry ; 199(11): 1223-1231, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37259603

RESUMO

In the process of optimisation of radiological protection in long-term radioactive waste management, design options for disposal facilities are assessed from the viewpoint of practical reduction in radiation dose to as low as reasonably achievable (ALARA). In this paper, a probabilistic approach is introduced to evaluate differences in dose distributions between alternative facility designs using the Bayesian inference technique. It is demonstrated by a series of parametric calculations for hypothetic disposal system designs that an additional dose from an disposal facility could be sufficiently reduced from the viewpoint of dose reduction under the ALARA principle if the design option for a disposal facility whose 95th percentile of dose distribution is lower than the target dose of 0.1 mSv/y is provided. Reducing uncertainties of the distribution of dose from disposal options is also an important aspect for the practical reduction in radiation dose to which members of the public are exposed.


Assuntos
Proteção Radiológica , Resíduos Radioativos , Eliminação de Resíduos , Gerenciamento de Resíduos , Teorema de Bayes , Resíduos Radioativos/análise , Proteção Radiológica/métodos , Instalações de Eliminação de Resíduos , Eliminação de Resíduos/métodos
12.
J Hazard Mater ; 458: 131940, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37390682

RESUMO

Deep Geological Repository (DGR) is the preferred option for the final disposal of high-level radioactive waste. Microorganisms could affect the safety of the DGR by altering the mineralogical properties of the compacted bentonite or inducing the corrosion of the metal canisters. In this work, the impact of physicochemical parameters (bentonite dry density, heat shock, electron donors/acceptors) on the microbial activity, stability of compacted bentonite and corrosion of copper (Cu) discs was investigated after one-year anoxic incubation at 30 ºC. No-illitization in the bentonite was detected confirming its structural stability over 1 year under the experimental conditions. The microbial diversity analysis based on 16 S rRNA gene Next Generation Sequencing showed slight changes between the treatments with an increase of aerobic bacteria belonging to Micrococcaceae and Nocardioides in heat-shock tyndallized bentonites. The survival of sulfate-reducing bacteria (the main source of Cu anoxic corrosion) was demonstrated by the most probable number method. The detection of CuxS precipitates on the surface of Cu metal in the bentonite/Cu metal samples amended with acetate/lactate and sulfate, indicated an early stage of Cu corrosion. Overall, the outputs of this study help to better understand the predominant biogeochemical processes at the bentonite/Cu canister interface upon DGR closure.


Assuntos
Microbiota , Resíduos Radioativos , Bentonita/química , Resíduos Radioativos/análise , Cobre/análise , Argila , Corrosão , Sulfatos/análise
13.
J Radiol Prot ; 43(3)2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37339608

RESUMO

A monitoring programme, in place since 2006, continues to recover radioactive particles (<2 mm diameter) and larger objects from the beaches of West Cumbria. The potential risks to members of the public using the beaches are mainly related to prolonged skin contact with or the inadvertent ingestion of small particles. Most particles are classified as either 'beta-rich' or 'alpha-rich' and are detected as a result of their caesium-137 or americium-241 content. Beta-rich particles generally also contain strontium-90, with90Sr:137Cs ratios of up to about 1:1, but typically <0.1:1. Alpha-rich particles contain plutonium isotopes, with Pu:241Amαratios usually around 0.5-0.6:1. 'Beta-rich' particles have the greatest potential to cause localised skin damage if held in stationary contact with the skin for prolonged periods. However, it is concluded that only particles of >106Bq of137Cs, with high90Sr:137Cs ratios, would pose a significant risk of causing acute skin ulceration. No particles of this level of activity have been found. Inadvertent ingestion of a particle will result in the absorption to blood of a small proportion of the radionuclide content of the particle. The subsequent retention of radionuclides in body organs and tissues presents a potential risk of the development of cancer. For 'beta-rich' particles with typical activities (mean 2 × 104Bq137Cs, Sr:Cs ratio of 0.1:1), the estimated committed effective doses are about 30µSv for adults and about 40µSv for 1 year old infants, with lower values for 'alpha-rich' particles of typical activities. The corresponding estimates of lifetime cancer incidence following ingestion for both particle types are of the order of 10-6for adults and up to 10-5for infants. These estimates are subject to substantial uncertainties but provide an indication of the low risks to members of the public.


Assuntos
Praias , Exposição Ambiental , Resíduos Radioativos , Poluentes Radioativos do Solo , Humanos , Lactente , Radioisótopos de Césio/efeitos adversos , Radioisótopos de Césio/análise , Plutônio/efeitos adversos , Plutônio/análise , Poluentes Radioativos do Solo/efeitos adversos , Poluentes Radioativos do Solo/análise , Reino Unido , Resíduos Radioativos/efeitos adversos , Resíduos Radioativos/análise , Adulto , Medição de Risco , Exposição Ambiental/efeitos adversos , Monitoramento Ambiental , Pele/efeitos da radiação , Ingestão de Alimentos , Neoplasias/induzido quimicamente , Partículas beta/efeitos adversos , Partículas alfa/efeitos adversos
14.
Sci Total Environ ; 881: 163324, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37028656

RESUMO

Naturally occurring radioactive materials (NORM) are present worldwide and under certain circumstances (e.g., human activities) may give radiation exposure to workers, local public or occasional visitors and non-human biota (NHB) of the surrounding ecosystems. This may occur during planned or existing exposure situations which, under current radiation protection standards, require identification, management, and regulatory control as for other practices associated with man-made radionuclides that may result in the exposure of people and NHB. However, knowledge gaps exist with respect to the extent of global and European NORM exposure situations and their exposure scenario characteristics, including information on the presence of other physical hazards, such as chemical and biological ones. One of the main reasons for this is the wide variety of industries, practices and situations that may utilise NORM. Additionally, the lack of a comprehensive methodology for identification of NORM exposure situations and the absence of tools to support a systematic characterisation and data collection at identified sites may also lead to a gap in knowledge. Within the EURATOM Horizon 2020 RadoNorm project, a methodology for systematic NORM exposure identification has been developed. The methodology, containing consecutive tiers, comprehensively covers situations where NORM may occur (i.e., minerals and raw materials deposits, industrial activities, industrial products and residues and their applications, waste, legacies), and thus, allows detailed investigation and complete identification of situations where NORM may present a radiation protection concern in a country. Details of the tiered methodology, with practical examples on harmonised data collection using a variety of existing sources of information to establish NORM inventories, are presented in this paper. This methodology is flexible and thus applicable to a diversity of situations. It is intended to be used to make NORM inventory starting from the scratch, however it can be used also to systematise and complete existing data.


Assuntos
Exposição à Radiação , Monitoramento de Radiação , Proteção Radiológica , Resíduos Radioativos , Humanos , Ecossistema , Radioisótopos/análise , União Europeia , Resíduos Radioativos/análise
15.
J Contam Hydrol ; 256: 104138, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37011473

RESUMO

Transport models used for assessing the safety of radioactive waste repositories hosted in fractured bedrock typically do not consider fluxes of naturally occurring radionuclides in the rock and their further migration in flow-bearing fractures. A consistent model that simultaneously describes the transport of radionuclides from both natural and anthropogenic sources has been developed, where decay chains and rock heterogeneity are accounted for. The model accounts for advective flow in the fracture, a decay chain of arbitrary length, and diffusion into and out of the adjacent rock matrix composed of different geological layers. The proposed solution has been verified against a previously published steady state case which considers a homogeneous rock matrix of infinite extent where porewater ingrowth is not accounted for. The model is also applied to some different calculation examples for both transient and limiting steady state cases to represent typical applications of the model as well as to illustrate the effect of different parameters and processes on the transport of natural radionuclides in fractured rocks. This study presents a novel and powerful tool to simulate migration of both anthropogenic and natural radionuclides in and from crystalline rocks to the biosphere. The presented modelling is essential in safety and performance assessment of deep geological disposal of radioactive waste in fractured rocks. The obtained analytical solution can be used to compare relative fluxes of natural and anthropogenic radionuclides, which is useful for validation of the radionuclide transport parameters obtained from field and laboratory experiments.


Assuntos
Resíduos Radioativos , Resíduos Radioativos/análise , Movimentos da Água , Radioisótopos , Difusão , Geologia , Modelos Teóricos
16.
Environ Sci Technol ; 57(17): 6776-6798, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37071722

RESUMO

99Technetium (99Tc) is a hazardous radionuclide that poses a serious environmental threat. The wide variation and complex chemistries of liquid nuclear waste streams containing 99Tc often create unique, site specific challenges when sequestering and immobilizing the waste in a matrix suitable for long-term storage and disposal. Therefore, an effective management plan for 99Tc containing liquid radioactive wastes (such as storage (tanks) and decommissioned wastes) will likely require a variety of suitable materials/matrixes capable of adapting to and addressing these challenges. In this review, we discuss and highlight the key developments for effective removal and immobilization of 99Tc liquid waste in inorganic waste forms. Specifically, we review the synthesis, characterization, and application of materials for the targeted removal of 99Tc from (simulated) waste solutions under various experimental conditions. These materials include (i) layered double hydroxides (LDHs), (ii) metal-organic frameworks (MOFs), (iii) ion-exchange resins (IERs) as well as cationic organic polymers (COPs), (iv) surface modified natural clay materials (SMCMs), and (v) graphene-based materials (GBMs). Second, we discuss some of the major and recent developments toward 99Tc immobilization in (i) glass, (ii) cement, and (iii) iron mineral waste forms. Finally, we present future challenges that need to be addressed for the design, synthesis, and selection of suitable matrixes for the efficient sequestration and immobilization of 99Tc from targeted wastes. The purpose of this review is to inspire research on the design and application of various suitable materials/matrixes for selective removal of 99Tc present globally in different radioactive wastes and its immobilization in stable/durable waste forms.


Assuntos
Resíduos Radioativos , Resíduos Radioativos/análise , Minerais , Argila , Tecnécio
17.
J Environ Radioact ; 263: 107163, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37030082

RESUMO

This paper presents the approach, assumptions, and computational analysis of the preliminary safety assessment, regarding the post-closure period for the disposal of radioactive waste in Greece. The assessment was implemented in the context of the National Program for the disposal of radioactive waste in the country, which is currently in the early stage for the investigation of facility siting. The basis scenario selected for this investigation was the leaching of radionuclides and the exposure in a residence offsite. Moreover, a scenario involving the intrusion in the facility and construction of a dwelling that disturbs the disposal zone is also considered. Due to the significant uncertainties in the current phase, the simulations related to leaching of the waste both in the offsite and intrusion scenarios are based on an uncertainty analysis with 25 site and scenario related parameters. The most important contribution is attributed to Ra-226 with an annual dose equal to about 2 and 3 µSv per MBq disposed, for the offsite and intrusion scenario, respectively. Th-232, Cl-36, C-14, Ag-108m and Pu-239 follow with a dose one order of magnitude less, compared to Ra-226. In the leaching scenarios examined, and for the most dose relevant radionuclides, the exposure related to drinking water from the well and the use of this water to irrigate fruits and vegetables are by far the dominant pathways due to the environmental transfer of the radionuclides and their associated dose coefficients. Th-232 dominates the direct exposure pathways (direct external radiation and plant contamination from the contaminated surface soil) in the intrusion scenario with an annual dose of about 1.4 mSv per Bq/g disposed. Ra-226, Cl-36 and Ag-108m cause exposure levels higher than 0.2 mSv/y per Bq/g disposed in the facility. A wide range was considered for the uncertainty parameters that led to a significant variation in the predicted doses that is expected to envelope the potential exposure for each radionuclide.


Assuntos
Plutônio , Monitoramento de Radiação , Resíduos Radioativos , Poluentes Radioativos do Solo , Resíduos Radioativos/análise , Plutônio/análise , Grécia , Poluentes Radioativos do Solo/análise
18.
J Contam Hydrol ; 256: 104172, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36966600

RESUMO

This article focuses on modeling 90Sr migration in strong nitrate solutions in aquifers used for radioactive waste disposal. This type of radioactive waste disposal is typical only for the Russian Federation and is a unique object of study. The calculations are based on the laboratory study of strontium sorption in nitrate solutions on sandy, loamy and clayey rocks under biotic (with natural microbial communities obtained from Seversky repository) and abiotic conditions. To obtain a strontium sorption model, first, an ion exchange model in PHREEQC software is fitted to the experimental data both manually and automatically (using MOUSE software). Since real nitrate-ion concentrations at radioactive waste injection sites can reach values of hundreds of grams per liter, strontium Kd values are predicted for high ionic strength (for which no experimental study of strontium sorption efficiency has been carried out) with PHREEQC-model. The strontium transport models accounting for sorption and the nitrate reduction processes have been developed using two numerical software packages: the GeRa 3D hydrogeological simulation code and the PHREEQC reactive transport code. Reactive transport modeling under different conditions shows a high sensitivity to dispersion. A significant effect of sorption of nitrate ion on Sr sorption is shown and a relatively small contribution of microbial processes to strontium transport is noted for liquid radioactive waste injection sites.


Assuntos
Resíduos Radioativos , Poluentes Radioativos da Água , Estrôncio , Resíduos Radioativos/análise , Nitratos , Poluentes Radioativos da Água/análise , Argila , Adsorção
19.
Health Phys ; 124(6): 441-450, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36799761

RESUMO

ABSTRACT: Oil and natural gas fracking waste contains technologically enhanced naturally occurring radioactive material (TENORM) and has increasingly been disposed of in unpermitted landfills, causing concern among regulators and the public about potential exposures. There are numerous issues with TENORM waste, including the lack of Federal regulations on its disposal and the lack of permitted landfills capable of accepting these waste streams. This paper examines two situations in which TENORM was placed in unpermitted landfills, one in Kentucky and one in Oregon. The same modeling and dose calculation methods were used in both cases, allowing for a comparison between the two sites. Site-specific differences, source terms, and doses from the disposals and potential remediation options are discussed and compared. Predicted groundwater concentrations are shown and compared against the relevant regulations for each site. Despite the differences in site and TENORM waste characteristics, it was more protective of the community and the environment to leave the waste in place at both sites. Radiation doses to landfill workers on site and to members of the public were low, both during the original disposal and for the remediation alternatives evaluated. Removal of the TENORM material in either case presents significant non-radiological risks that outweigh any benefit from the long-term dose reduction.


Assuntos
Resíduos Radioativos , Eliminação de Resíduos , Humanos , Kentucky , Oregon , Resíduos Radioativos/análise
20.
J Environ Radioact ; 261: 107139, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36842336

RESUMO

The oil and gas industries are the largest producers of NORM wastes that are continuously generated during production and extraction activities. In addition, an increasing trend is observed in waste production worldwide due to the decommissioning of oil platforms. The problem is that most of these wastes are in activity concentration levels above the exemption and the clearance limits and are being accumulated in storage sites because no repositories exist in Brazil for NORM wastes generated by oil industries. There are regulations for radioactive wastes and for the licensing of repositories for managing wastes with low and intermediate levels of radiation but the current regulations apply only to packaged wastes. Therefore an initial radiological assessment was carried out with the RESRAD-OFFSITE code to show that bulk NORM wastes (not packaged wastes) could be disposed of in repositories near the surface without causing additional risk to the public above the criteria used. The results can also support decision-making by the Regulatory Authority to change the current regulations and allow for the disposal of wastes in bulk form.


Assuntos
Monitoramento de Radiação , Resíduos Radioativos , Eliminação de Resíduos , Brasil , Resíduos Radioativos/análise , Indústrias , Eliminação de Resíduos/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...